Supporting Information: Contributions to regional precipitation change and its polar-amplified pattern under warming

David B. Bonan¹, Nicole Feldl², Mark D. Zelinka³, Lily C. Hahn⁴

¹Environmental Science and Engineering, California Institute of Technology, Pasadena, CA, USA ²Earth and Planetary Sciences, University of California Santa Cruz, CA, USA ³Lawrence Livermore National Laboratory, Livermore, CA, USA ⁴Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA

June 20, 2023

Table of Contents

- 1. Supplemental Table 1
- 2. Supplemental Table 2
- 3. Supplemental Figure 1
- 4. Supplemental Figure 2
- 5. Supplemental Figure 3
- 6. Supplemental Figure 4

	Model Name	Ensemble	
1.	ACCESS1-0	r1i1p1	
2.	ACCESS1-3	r1i1p1	
3.	bcc-csm1-1 r1i1p1		
4.	bcc-csm1-1-m r1i1p1		
5.	BNU-ESM r1i1p1		
6.	CanESM2 r1i1p1		
7.	CCSM4 r1i1p1		
8.	CNRM-CM5 r1i1p1		
9.	CNRM-CM5-2	r1i1p1	
10.	GFDL-CM3	r1i1p1	
11.	GFDL-ESM2G	r1i1p1	
12.	GFDL-ESM2G-1	r1i1p1	
13.	GFDL-ESM2M r1i1p1		
14.	GISS-E2-H r1i1p1		
15.	GISS-E2-R r1i1p1		
16.	HadGEM2-ES	r1i1p1	
17.	IPSL-CM5A-LR	r1i1p1	
18.	IPSL-CM5A-MR	r1i1p1	
19.	IPSL-CM5B-LR	r1i1p1	
20.	MIROC5	r1i1p1	
21.	MIROC-ESM	r1i1p1	
22.	MRI-CGCM3	r1i1p1	
23.	NorESM1-M	r1i1p1	

Supplemental Table 1: List of the CMIP5 coupled GCMs (n = 23) used in this study. The abrupt-4xCO2 simulation for each GCM is used.

	Model Name	Ensemble
1.	ACCESS-CM2	rlilplfl
2.	ACCESS-ESM1-5	r1i1p1f1, r2i1p1f1
3.	AWI-CM-1-1MR	r1i1p1f1
4.	BCC-CSM2-MR	r1i1p1f1
5.	CESM2	r1i1p1f1
6.	CESM2-FV2	rlilp1f1
7.	CESM2-WACCM	rlilplfl
8.	CESM2-WACCM-Fv2	r1i1p1f1
9.	CMCC-CM2-SR5	r1i1p1f1
10.	CMCC-ESM2	rlilplfl
11.	CMCC-CM2-HR4	r1i1p1f1
12.	CNRM-CM6-1	r1i1p1f2
13.	CNRM-CM6-1-HR	r1i1p1f2
14.	CNRM-ESM2-1	r1i1p1f2, r2i1p1f2, r3i1p1f2
15.	CanESM5	r1i1p1f1, r1i1p2f1
16.	CanESM5-1	r1i1p1f1, r1i1p2f1
17.	E3SM-1-0	rlilplfl
18.	E3SM-2-0	r1i1p1f1, r2i1p1f1
19.	EC-Earth3	r3i1p1f1, r8i1p1f1
20.	EC-Earth3-CC	rlilplfl
21.	EC-Earth3-Veg-LR	rlilplfl
22.	EC-Earth3-Veg	rlilplfl
23.	FGOALS-f3-L	r1i1p1f1, r2i1p1f1, r3i1p1f1
24.	FGOALS-g3	rlilplfl
25.	GFDL-CM4	rlilplfl
26.	GISS-E2-1-H	rlilplfl, rlilp3fl, rlilp5fl
27.	GISS-E2-2-H	rlilplfl
28.	HadGEm3-GC31-LL	rlilplf3
29.	HadGEm3-GC31-MM	rlilplf3
30.	IITM-ESM	rlilplfl
31.	INM-CM4-8	rlilplfl
32.	INM-CM5-0	rlilplfl
33.	IPSL-CM6A-LR	rlilplfl
34.	IPSL-CM6A-LR-INCA	rlilplfl
35.	KACE-1-0-G	rlilplfl
36.	MIROC-ES2H	r1i1p4f2, r2i1p4f2, r3i1p4f2
37.	MIROC-ES2L	r1i1p1f2
38.	MIROC6	rlilplfl
39.	MPI-ESM-1-2-HAM	rlilplfl
40.	MPI-ESM1-2-HR	rlilplfl
41.	MPI-ESM1-2-LR	rlilplfl
42.	MRI-ESM2-0	rlilplf1, rli2plf1, r4i1plf1, r7i1plf1, r10i1plf1, r13i1plf1
43.	UKESM1-0-LL	rlilplf2

Supplemental Table 2: List of the CMIP6 coupled GCMs (n = 61) used in this study. The abrupt-4xCO2 simulation for each GCM is used.

Supplemental Figure 1: **Zonal-mean local atmospheric radiative feedbacks in CMIP5 and CMIP6.** The zonal-mean and multi-model mean (a) net, (b) surface-albedo, (c) water vapor, (d) lapse rate, (e) cloud, and (f) Planck atmospheric radiative feedbacks for CMIP5 (solid line) and CMIP6 (dashed line). Each feedback is normalized by the local temperature change and calculated as the difference between top-of-atmosphere and surface radiative feedbacks.

Supplemental Figure 2: Contributions to the polar amplification of relative precipitation change. Area-averaged multimodel mean relative precipitation change from 30° S to 30° N plotted against the area-averaged multi-model mean relative precipitation change from (a) 60° S to 90° S and (b) 60° N to 90° N. The black dot represents the total change and each colored dot represents an individual mechanism from Eq. (3) for each region in CMIP6. Changes are computed as the difference between years 130 - 150 and years 1 - 20 in abrupt-4xCO2 simulations.

Supplemental Figure 3: **Contributions to the polar amplification of relative precipitation change.** Area-averaged multimodel mean relative precipitation change from 10°S to 10°N plotted against the area-averaged multi-model mean relative precipitation change from (a) 60°S to 90°S and (b) 60°N to 90°N. The black dot represents the total change and each colored dot represents an individual mechanism from Eq. (3) in CMIP5. Changes are computed as the difference between years 130 - 150and years 1 - 20 in abrupt-4xCO2 simulations.

Supplemental Figure 4: **Sources of uncertainty in relative precipitation change.** Fractional contributions of each mechanism in Eq. (3) to the intermodel variance in relative precipitation change for the (a) Arctic (60° N to 90° N), (b) Northern Hemisphere subtropics (10° N to 30° N), (c) tropics (10° S to 10° N), (d) Southern Hemisphere subtropics (10° S to 30° S), and (e) Antarctic (60° S to 90° S) across CMIP5. Variances smaller than +/- 0.1 are omitted.