
Generated using the official AMS LATEX template v6.1

Diagnosing mechanisms of hydrologic change under global warming in the1

CESM1 Large Ensemble2

Nicholas Siler,a David B. Bonan,b and Aaron Donohoec3

a College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon4

b California Institute of Technology, Pasadena, California5

c Polar Science Center/Applied Physics Lab, University of Washington, Seattle, Washington6

Corresponding author: Nicholas Siler, nick.siler@oregonstate.edu7

1



ABSTRACT: Global warming is expected to cause significant changes in the pattern of precip-

itation minus evaporation (𝑃 − 𝐸), which represents the net flux of water from the atmosphere

to the surface or, equivalently, the convergence of moisture transport within the atmosphere. In

most global climate model simulations, the pattern of 𝑃−𝐸 change resembles an amplification of

the historical pattern—a tendency known as “wet gets wetter, dry gets drier". However, models

also predict significant departures from this approximation that are not well understood. Here,

we introduce a new method of decomposing the pattern of 𝑃−𝐸 change into contributions from

various dynamic and thermodynamic mechanisms, and use it to investigate the response of 𝑃−𝐸

to global warming within the CESM1 Large Ensemble. In contrast to previous decompositions

of 𝑃−𝐸 change, ours incorporates changes not only in the monthly means of atmospheric winds

and moisture, but also in their temporal variability, allowing us to quantify the impacts of changes

in the storm tracks, relative humidity, lapse rate changes, and the amplification of warming over

land and at high latitudes. In general, mean circulation changes dominate the 𝑃−𝐸 response in

the tropics, while thermodynamic changes are more important at higher latitudes. Although the

impact of specific mechanisms is highly variable by region, at the global scale departures from

the wet-gets-wetter approximation over land are primarily due to changes in the lapse rate, while

changes in the mean circulation, relative humidity, and horizontal temperature gradients play a

secondary role.
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1. Introduction26

The local imbalance between precipitation and evaporation, 𝑃−𝐸 , is among the most important27

variables in hydrology. Over land, 𝑃 − 𝐸 equals to the combined rates of surface runoff and28

groundwater storage, and thus sets the upper limit on renewable freshwater resources within a29

given watershed (Oki and Kanae 2006). Over the ocean, 𝑃−𝐸 is a leading control on the salinity30

and stratification of the mixed layer, which plays an important role in the ocean circulation (e.g.,31

de Boyer Montégut et al. 2007), and influences the rate at which the ocean takes up heat and carbon32

in response to anthropogenic forcing (e.g., Liu et al. 2021). From an atmospheric perspective, 𝑃−𝐸33

equals the net convergence of water vapor transport, and thus provides a conceptual framework34

for understanding how the regional hydrologic cycle will respond to changes in the atmospheric35

circulation or moisture content. For these reasons, the response of 𝑃−𝐸 to global warming has36

been an active area of climate research for decades (e.g., Wetherald and Manabe 2002; Held and37

Soden 2006).38

A natural starting point for thinking about the response of 𝑃 − 𝐸 to global warming is the39

thermodynamic approximation of Held and Soden (2006, hereafter HS06), which is based on40

the following line of reasoning. First, if changes in relative humidity are small, the amount of41

water vapor in the atmosphere will increase almost exponentially with increasing temperature,42

at a rate of about 7% per K (i.e., the Clausius-Clapeyron scaling factor). Second, if the basic43

structure and intensity of the atmospheric circulation remains similar under warming, the pattern44

of atmospheric vapor transport should increase with warming at about the same rate as water vapor.45

Finally, because 𝑃−𝐸 is equal to the convergence of vapor transport, it too should amplify at the46

Clausius-Clapeyron rate, provided that spatial gradients in warming are relatively weak. Such an47

amplification of the mean-state hydrologic cycle with warming implies that 𝑃− 𝐸 will increase48

where 𝑃 > 𝐸 (“wet gets wetter") and decrease where 𝑃 < 𝐸 (“dry gets drier").49

Although an amplification of mean-state 𝑃− 𝐸 is broadly consistent with the pattern of 𝑃− 𝐸50

change predicted by global climate models (GCMs), there are some important differences. At low51

latitudes, for example, many GCMs predict a contraction of the Intertropical Convergence Zone52

(ITCZ), where 𝑃−𝐸 > 0, and an expansion of the subtropics, where 𝑃−𝐸 < 0 (Chou and Neelin53

2004; Lu et al. 2007; Kang and Lu 2012; Byrne and Schneider 2016; Byrne et al. 2018; Donohoe54

et al. 2019). At higher latitudes, GCMs tend to predict a poleward shift in the extratropical latitude55
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of maximum 𝑃−𝐸 associated with the mid-latitude storm tracks (e.g., Scheff and Frierson 2012;56

Siler et al. 2018). None of these changes is consistent with the HS06 paradigm of "wet gets wetter,57

dry gets drier". Furthermore, because 𝑃−𝐸 cannot be negative over land on long timescales, the58

HS06 approximation cannot explain any decrease in 𝑃−𝐸 over land, which many GCMs predict59

will occur in parts of the subtropics and lower-midlatitudes (Byrne and O’Gorman 2015).60

Why does the pattern of 𝑃−𝐸 change predicted by GCMs differ from the HS06 approximation?61

The most obvious reason is that the HS06 approximation does not account for changes in atmo-62

spheric dynamics, such as an expansion of the Hadley Cells (e.g., Lu et al. 2007), a weakening of63

the Walker Cells (e.g., Power and Kociuba 2011; DiNezio et al. 2013), a shift in stationary eddies64

(Wills et al. 2016), or a decrease in transient eddy activity in the midlatitudes (O’Gorman and65

Schneider 2008; Bengtsson et al. 2009). All GCMs predict dynamical changes like these to some66

degree, and any such change is bound to alter the patterns of vapor transport and thus 𝑃− 𝐸 in67

ways that are not captured by the HS06 approximation.68

But changes in atmospheric dynamics are not the only aspect of climate change that the HS0669

approximation leaves out; it also neglects thermodynamic effects associated with changes in the70

spatial patterns of temperature and relative humidity. More specifically, GCMs generally predict71

that relative humidity will decrease over land in a warmer climate, and that the magnitude of72

warming will be amplified over land and at high latitudes. Boos (2012) and Byrne and O’Gorman73

(2015) both introduced additional terms to the HS06 approximation that account for these changes,74

and both found that their corrections resulted in better agreement with GCM simulations of 𝑃−𝐸75

change. Similarly, in simulations performed with a one-dimensional diffusive energy balance76

model (EBM), Siler et al. (2018) found that polar-amplified warming resulted in a more realistic77

pattern of 𝑃− 𝐸 change, even though the diffusion coefficient, which represents eddy dynamics78

within the EBM, was held constant. According to Byrne and O’Gorman (2015), corrections to the79

HS06 approximation that account for heterogeneous changes in temperature and relative humidity80

result in a smaller increase in 𝑃 − 𝐸 over land, and may explain why, over some land surfaces,81

𝑃−𝐸 is even projected to decrease.82

To better understand the thermodynamic and dynamic mechanisms driving the 𝑃−𝐸 response83

to global warming in GCM simulations more generally, previous studies have often employed a84

decomposition method first introduced by Seager et al. (2010), which allows any change in 𝑃−𝐸85
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to be separated into contributions from changes in i) monthly-mean winds (dynamics), ii) monthly-86

mean specific humidity (thermodynamics), and iii) the covariance between winds and specific87

humidity, which represents vapor transport by transient eddies. This decomposition has provided88

valuable insight in cases where 𝑃−𝐸 change is primarily driven by changes inmonthly-meanwinds89

or moisture. However, the transient eddy contribution includes both dynamic and thermodynamic90

contributions, since it encompasses both changes in eddy dynamics (e.g., storm track shifts) as well91

as changes in the variance of humidity, which is generally expected to increase due to Clausius-92

Clapeyron scaling (Byrne and O’Gorman 2015). Thus, the decomposition introduced by Seager93

et al. (2010) does not permit a full accounting of the dynamic and thermodynamic components94

of 𝑃 − 𝐸 change, nor can it provide insight into the contributions of specific thermodynamic95

mechanisms, such as those described byHeld andSoden (2006), Boos (2012), Byrne andO’Gorman96

(2015), and Siler et al. (2018).97

In this paper, we introduce a novel decomposition of 𝑃−𝐸 change that allows us to quantify not98

only the dynamic and thermodynamic components of the transient-eddy contribution, but also the99

contributions from various other thermodynamic mechanisms. We explain our approach in Section100

2, and use it to quantify the total thermodynamic and dynamic components of the 𝑃−𝐸 response101

to climate change within the CESM1 Large Ensemble. In Section 3, we further decompose the102

thermodynamic and dynamic components into contributions from monthly-mean and transient-103

eddy changes, thus providing a first-ever decomposition of the transient-eddy contribution to 𝑃−𝐸104

change. In Section 4, we present a new decomposition of the thermodynamic component of105

𝑃−𝐸 change into contributions from specific thermodynamic mechanisms, many of which have106

been discussed in previous studies. We then use these results in Section 5 to reexamine why the107

HS06 approximation is too wet over land. In Section 6, we summarize our results and discuss108

their implications for other simplified approaches to climate modeling, including the moist energy109

balance model and the pseudo-global warming method of regional climate modeling.110

2. A new decomposition of 𝑃−𝐸 change, applied to the CESM-1 Large Ensemble111

In this section, we introduce a new method of decomposing the change in annual-mean 𝑃− 𝐸112

into thermodynamic and dynamic components, and apply it to simulations of global warming113

from the CESM-1 Large Ensemble (CESM1-LE; Kay et al. 2015). The CESM1-LE consists of114
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40 coupled atmosphere-ocean simulations performed at roughly 1 degree horizontal resolution115

over the period 1920-2100. All ensemble members were run with exactly the same model physics116

and anthropogenic forcing (historical forcing up to 2005 and RCP8.5 afterward), but with slightly117

perturbed initial conditions that give each member a unique realization of internal climate vari-118

ability. Because the amplitude of internal variability decreases when multiple ensemble members119

are averaged, the response to anthropogenic forcing is well approximated by the change in the120

ensemble mean (Deser et al. 2012).121

We define the response to global warming within the CESM1-LE simulations as the change122

between two decadal climatologies: one representing the historical climate (1991-2000) and one123

representing a future warmer climate (2071-2080). To conserve computing resources, we limit our124

analysis to the first 20 ensemblemembers of theCESM1-LE, forwhich the ensemble-mean response125

of surface temperature and 𝑃−𝐸 is nearly identical to that of the full ensemble (Supplementary126

Fig. 1).127

The top row of Fig. 1 shows the pattern of annual-mean 𝑃− 𝐸 in the ensemble mean of the128

historical simulations (Fig. 1a), alongside the change in annual-mean 𝑃−𝐸 between the historical129

and warmer simulations (Fig. 1b). Results are presented as latent energy fluxes, with 1 W130

m−2 representing approximately 1.3 cm of surface water per year. Figure 1c shows the HS06131

approximation of the change in 𝑃−𝐸 , which we compute as132

𝛿𝑃−𝐸HS06 = 𝛼𝛿𝑇𝑠 (𝑃−𝐸), (1)

where133

𝛼 =
𝐿𝑣

𝑅𝑣𝑇
2
𝑠

(2)

is the Clausius-Clapeyron scaling factor, 𝑇𝑠 is local near-surface air temperature, 𝐿𝑣 is the latent134

heat of vaporization, and 𝑅𝑣 is the gas constant for water vapor. Throughout the paper, we use 𝛿 to135

indicate the change between the historical and warmer simulations and [ ] to indicate the monthly-136

and ensemble-mean value of a variable in a given location and climate. All results are presented137

for the annual mean, which we compute as the average of monthly means.138

Comparing the true pattern of 𝛿𝑃−𝐸 with the HS06 approximation (Figs. 1b and 1c), we145

find broad similarities but also important differences, as evidenced by a relatively weak spatial146
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Fig. 1. a) Annual-mean, ensemble-mean precipitation minus evaporation (𝑃−𝐸) in the historical climate of

the CESM1-LE simulations (1991-2000). b) The change in 𝑃−𝐸 between the historical climate and the warmer

climate (2071-2080). c) An approximation of the change in 𝑃−𝐸 based on Held and Soden (2006), computed

with Eq. 1. d) The difference between the HS06 approximation in (c) and the actual change in 𝑃−𝐸 in (b).

Graphs to the right of each map show the zonal mean of each variable over land grid points (red), ocean grid

points (blue), and all grid points (black).
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correlation of 𝑟 = 0.32 globally. The difference pattern is shown in Fig. 1d, and is broadly147

consistent with what other studies have found. In particular, the HS06 approximation tends to148

exaggerate the magnitude of both the increase in 𝑃−𝐸 over land and at high latitudes, and the149

decrease in 𝑃−𝐸 over subtropical oceans (e.g., Byrne and O’Gorman 2015; Siler et al. 2018). It150

also fails to capture any changes in the spatial pattern of 𝑃−𝐸 , which are especially large in the151

tropics.152

We can gain insight into the pattern of 𝛿𝑃−𝐸 by analyzing it in terms of the atmospheric153

moisture budget. From mass conservation, 𝑃−𝐸 must equal the convergence of net atmospheric154

latent energy transport on long timescales (Trenberth and Guillemot 1995):155

𝑃−𝐸 = −∇ ·F, (3)
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where156

F =
𝐿𝑣

𝑔

∫ 𝑝𝑠

0
𝑞u𝑑𝑝 (4)

is a 2D vector representing the column-integrated horizontal latent energy transport, 𝑔 is the157

acceleration due to gravity, 𝑝𝑠 is surface pressure, 𝑞 is specific humidity, u is the horizontal wind158

vector (𝑢i+𝑣j), and (∇·) is the 2D divergence operator. Likewise, the change in 𝑃−𝐸 under global159

warming can be expressed as160

𝛿𝑃−𝐸 = −𝐿𝑣

𝑔
∇ ·

[∫ 𝑝𝑠,𝑤

0
𝑞𝑤u𝑤𝑑𝑝−

∫ 𝑝𝑠

0
𝑞u𝑑𝑝

]
, (5)

where the subscript "w" indicates the warmer climate and the absence of a subscript indicates the161

historical climate.162

Equation 5 shows that the net change in 𝑃−𝐸 under global warming arises from the product of163

changes in 𝑞 (thermodynamics) and changes in u (dynamics). To better understand the pattern of164

𝑃−𝐸 change in Fig. 1b, we seek to quantify the impacts not only of mean changes in 𝑞 and u, as165

is commonly done (e.g., Seager et al. 2010), but also of changes in their temporal variability.166

We begin our decomposition of 𝛿𝑃−𝐸 by isolating the total impact of thermodynamic changes,167

which we define as any change in the spatial or temporal distribution of 𝑞 (𝛿𝑞 = 𝑞𝑤 −𝑞) , assuming168

no change in u:169

𝛿𝑃−𝐸𝑞 ≈ −𝐿𝑣

𝑔
∇ ·

∫ 𝑝𝑠

0
𝛿𝑞u𝑑𝑝. (6)

To estimate 𝛿𝑞 at each time step, we first compute the probability density function (PDF) of 6-170

hourly 𝑞 for each month, grid point, and pressure level in both the historical and warmer climates.171

With each climate state simulated by 20 ensemble members, and with a decade of model output172

from each member, the monthly PDF at each grid point and pressure level comprises about 24,000173

data points.1 Next, we use the historical PDFs to find the percentile rank of 𝑞 at each location and174

time step within the historical simulations, and estimate 𝛿𝑞 as the difference between the warmer175

and historical PDFs at the same percentile. The implicit assumption behind this approach is that176

the percentile rank of 𝑞 at a particular time is closely tied to the large-scale circulation, and thus177

the correlation between 𝑞 and u does not change in the percentile sense when u is held fixed.178

120 members × 10 months/member × ∼ 30 days/month × 4 data points/day= 24,000 data points.
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An example of how we use this method to approximate 𝑞 is illustrated in Fig. 2, which shows185

hypothetical PDFs of 𝑞 for an arbitrary month and location in the historical climate (blue) and186

the warmer climate (red), with shading representing the extreme tenths of each distribution (i.e.,187

the 10th and 90th percentiles). Comparing the two PDFs in Fig. 2, we see that the warmer
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Fig. 2. Schematic probability density functions of atmospheric specific humidity (𝑞) for a particular month

and location within the historical climate (blue) and the warmer climate (red). Vertical dashed lines indicate

monthly-mean 𝑞, while shaded regions indicate the lowest and highest 10% of 𝑞 values within each distribution.

In this hypothetical case, the warmer climate exhibits not only an increase in mean 𝑞 (i.e., the peak shifts to the

right), but also an increase in 𝑞 variance (i.e., the distribution broadens). As a result, 𝛿𝑞 < 𝛿𝑞 when the historical

atmosphere is drier than average, while 𝛿𝑞 > 𝛿𝑞 when the historical atmosphere is moister than average.
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distribution is generally to the right of the baseline distribution, indicating greater moisture content189

overall. However, the warmer distribution is also broader than the baseline distribution, indicating190

an increase in the variance of 𝑞 under global warming. Because of this increase in variance, 𝛿𝑞191

will be greater than the change in monthly-mean 𝑞 (𝛿𝑞) whenever 𝑞 in the historical simulation is192

greater than average (i.e., to the right of the blue dashed line). Conversely, 𝛿𝑞 will be less than 𝛿𝑞193

whenever 𝑞 in the historical simulation is less than average (i.e., to the left of the blue dashed line).194

The opposite relationships would hold if the variance of 𝑞 were to decrease rather than increase195

with warming. Changes in the higher-order moments of the 𝑞 distribution would impact 𝛿𝑞 is ways196

that are less obvious than the simple change in variance depicted in Fig. 2, but those effects are197

also incorporated with this method.198

Next we seek to approximate the dynamic component of 𝛿𝑃−𝐸 , which we define as the contri-199

bution from changes in u and 𝑝𝑠,2 assuming no change in 𝑞. This is less straightforward than the200

thermodynamic approximation because it includes the effects of changes not only in the PDFs of201

2Because 𝑝𝑠 is closely tied to the large-scale circulation, we consider changes in 𝑝𝑠 to be part of the dynamic response to warming.
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𝑝𝑠, 𝑢, and 𝑣, but also in the correlations among them (e.g., Wu et al. 2011). While it might be202

possible in principle to account for such changes by perturbing 𝑝𝑠 and u in the historical simulation,203

we do not attempt that here. Instead, we repeat the thermodynamic approximation in Eq. 6, but in204

reverse: i.e., instead of adding 𝛿𝑞 at each time step within the historical simulations, we subtract205

𝛿𝑞 at each time step within the warmer simulations. This yields an approximation of 𝑃−𝐸 in a206

hypothetical future climate in which only u is changed, while the distribution of 𝑞 is the same as207

in the historical climate:208

𝑃−𝐸𝑤,u ≈ −𝐿𝑣

𝑔
∇ ·

∫ 𝑝𝑠,𝑤

0
(𝑞𝑤 − 𝛿𝑞)u𝑤𝑑𝑝. (7)

Finally, we subtract historical 𝑃−𝐸 from Eq. 7 to get the dynamic component of 𝛿𝑃−𝐸 :209

𝛿𝑃−𝐸u ≈ −𝐿𝑣

𝑔
∇ ·

[∫ 𝑝𝑠,𝑤

0
(𝑞𝑤 − 𝛿𝑞)u𝑤𝑑𝑝−

∫ 𝑝𝑠

0
𝑞u𝑑𝑝

]
. (8)

The top row of Fig. 3 shows the thermodynamic and dynamic contributions to annual-mean210

𝛿𝑃−𝐸 computed from Eqs. 6 and 8. The sum of these contributions is shown in Fig. 3c; if the211

decomposition method is accurate, this sum should match the actual pattern of 𝛿𝑃−𝐸 shown in212

Fig. 1b. The difference between Figs. 1b and 3c is shown in Fig. 3d, and represents the error in213

the decomposition. Globally, the sum of the thermodynamic and dynamic contributions closely214

matches the pattern of 𝛿𝑃−𝐸 , with a spatial correlation of 𝑟 = 0.96 and a mean absolute error of215

2.9 W m−2. Some of the error in Fig. 3d likely stems from changes in the correlations between 𝑞216

and the vector wind components (Wu et al. 2011), which are not accounted for in either 𝛿𝑃−𝐸𝑞217

or 𝛿𝑃−𝐸u. However, nearly half of the error can be attributed to our numerical methods (see218

Appendix): when we compare Fig. 3c with the pattern of 𝛿𝑃−𝐸 that we compute using the same219

moisture-budget framework (Eq. 5 with 6-hourly 𝑞 and u), the spatial correlation improves to220

𝑟 = 0.99 and the mean absolute error falls to 1.7 W m−2 (Supplementary Fig. 2). This shows that221

our decomposition produces highly accurate approximations of the thermodynamic and dynamic222

contributions to 𝛿𝑃−𝐸 within the CESM1-LE simulations.223

We can evaluate the relative importance of thermodynamic and dynamic changes by comparing229

the patterns of 𝛿𝑃−𝐸𝑞 and 𝛿𝑃−𝐸u in Figs. 3a and 3b against the total pattern of 𝛿𝑃−𝐸 in230
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Fig. 3. The contributions to annual-mean 𝛿𝑃−𝐸 from a) changes in specific humidity and b) changes in

horizontal winds as defined in Eqs. 6 and 8, respectively. c) The sum of the thermodynamic and dynamic

contributions in (a) and (b). d) The residual error in the decomposition, representing the difference between the

full pattern of 𝛿𝑃−𝐸 in Fig. 1b and the sum of the individual contributions in (c). Globally, the mean absolute

error is 2.9 W m−2, and the spatial correlation between panel (c) and Fig. 1b is 𝑟 = 0.96.

224

225

226

227

228

Fig. 1b. Globally, 𝛿𝑃−𝐸 is more strongly correlated with 𝛿𝑃−𝐸u than with 𝛿𝑃−𝐸𝑞 (𝑟 = 0.69231

vs. 0.31), indicating that dynamic changes are more important than thermodynamic changes to232

the overall spatial pattern. However, the strength of these correlations varies significantly with233

latitude. In the deep tropics equatorward of 10 degrees, the pattern of 𝛿𝑃−𝐸 is nearly identical234

to 𝛿𝑃−𝐸u (𝑟 = 0.84), while the correlation with 𝛿𝑃−𝐸𝑞 is insignificant (𝑟 = −0.03). Poleward of235

50 degrees, however, we find almost the opposite result, with 𝛿𝑃−𝐸 far more strongly correlated236

with 𝛿𝑃−𝐸𝑞 than with 𝛿𝑃−𝐸u (𝑟 = 0.78 vs 0.26). Thus, while the pattern of 𝛿𝑃−𝐸 is dominated237

by dynamical changes in the tropics, thermodynamic changes play a greater role at high latitudes,238

echoing results from previous studies of changes in extreme precipitation (Pfahl et al. 2017; Norris239

et al. 2019; O’Gorman 2015).240
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3. Decomposition into monthly-mean and transient components241

We can gain further insight into the patterns of 𝛿𝑃−𝐸𝑞 and 𝛿𝑃−𝐸u in Fig. 3 by further242

decomposing them into contributions from monthly-mean and transient changes. Our approach243

is similar to that of Seager et al. (2010), but with one important difference: in addition to the244

contributions to 𝛿𝑃−𝐸 from changes in mean-state dynamics and thermodynamics, we also245

isolate the dynamic and thermodynamic components of the transient-eddy contribution, which is246

not possible using the Seager et al. (2010) method.247

We begin by decomposing 𝑞 and u into two components,248

𝑞 = 𝑞 + 𝑞′, (9)

249

u = u+u′, (10)

where overbars represent long-term monthly means and primes represent departures from long-250

term monthly means (i.e., transients). Because the product of means and transients must equal251

zero in the time average, Eqs. 3, 4, 9, and 10 combine to give252

𝑃−𝐸 = −𝐿𝑣

𝑔
∇ ·

[∫ 𝑝𝑠

0
𝑞u𝑑𝑝 +

∫ 𝑝𝑠

0
𝑞′u′𝑑𝑝

]
, (11)

where the first term on the RHS represents the contribution to 𝑃−𝐸 from the monthly-mean253

circulation and the second (covariance) term represents the contribution from transient eddies.254

From Eq. 11, Seager et al. (2010) showed that the response of 𝑃−𝐸 to climate change can be255

decomposed into four terms:256

𝛿(𝑃−𝐸)Seager ≈ −𝐿𝑣

𝑔

∫ 𝑝𝑠

0
∇ · [𝛿𝑞u+ 𝑞𝛿u+ 𝛿(𝑞′u′)]𝑑𝑝− 𝛿(𝑞𝑠us∇𝑝𝑠). (12)

The first two terms on the RHS of Eq. 12 have a clear physical meaning, representing the impact257

of changes in monthly-mean thermodynamics (𝛿𝑞) and monthly-mean dynamics (𝛿u). In contrast,258

the two remaining terms, which represent the impact of changes in transient-eddy transport and259

surface vapor convergence, encompass both thermodynamic and dynamic elements, and are thus260

harder to interpret. The ambiguity of the eddy term, in particular, makes it impossible to assess261
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the impacts of dynamic changes in the storm tracks (𝛿u′) versus thermodynamic changes in the262

variance of 𝑞 (𝛿𝑞′).263

In our decomposition, by contrast, 𝛿𝑃−𝐸𝑞 and 𝛿𝑃−𝐸u include the impacts of changes not only264

in the monthly means of 𝑞 and u, but also in their temporal distributions. Because of this, we can265

compute the mean-state terms in the conventional way,266

𝛿𝑃−𝐸𝑞 = −𝐿𝑣

𝑔
∇ ·

∫ 𝑝𝑠

0
𝛿𝑞u𝑑𝑝, (13)

267

𝛿𝑃−𝐸u = −𝐿𝑣

𝑔
∇ ·

∫ 𝑝𝑠

0
𝑞𝛿u𝑑𝑝, (14)

and then solve for the transient terms as residuals3:268

𝛿𝑃−𝐸
′
𝑞 = −𝐿𝑣

𝑔
∇ ·

∫ 𝑝𝑠

0
𝛿𝑞′u′𝑑𝑝 ≈ 𝛿𝑃−𝐸𝑞 − 𝛿𝑃−𝐸𝑞, (15)

269

𝛿𝑃−𝐸u′ = −𝐿𝑣

𝑔
∇ ·

∫ 𝑝𝑠

0
𝑞′𝛿u′𝑑𝑝 ≈ 𝛿𝑃−𝐸u − 𝛿𝑃−𝐸u. (16)

This four-part decomposition of annual-mean 𝛿𝑃−𝐸 is shown in Fig. 4. The dynamic compo-272

nents in the top row represent the contributions from changes in monthly-mean winds (𝛿u; Fig. 4a)273

and transient winds (𝛿u′; Fig. 4b). Globally, the monthly-mean component of 𝛿𝑃−𝐸u is far more274

important than the transient component (Fig. 4a vs. 4b). It accounts for nearly all of 𝛿𝑃−𝐸u in275

the tropics, where 𝑃−𝐸 is strongly influenced by the Hadley, Walker, and monsoonal circulations,276

and it also has a significant impact in parts of the midlatitudes, likely due to changes in stationary277

eddies (Wills et al. 2016).278

Though weaker than the monthly-mean component globally, the transient dynamic component279

(𝛿𝑃−𝐸u′) plays a more important role in much of the middle and high latitudes where 𝑃−𝐸 is280

largely driven by transient eddies (Fig. 4b). It tends to be positive in the tropics and negative281

at higher latitudes, indicating a reduction in poleward latent-heat transport due to weaker eddy282

activity (Supplementary Fig. 3). Over land, it contributes to a significant decrease in 𝑃−𝐸 over283

the western US, western Europe, and eastern Canada, and an increase in 𝑃−𝐸 over tropical South284

America. We discuss the implications of this effect for regional climate prediction in Section 6.285

3The surface term in the Seager et al. (2010) decomposition does not appear in our decomposition because the divergence operator remains
outside the vertical integrals.
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Fig. 4. Contributions to annual-mean 𝛿𝑃−𝐸 from changes in a) monthly-mean dynamics, b) transient

dynamics, c) monthly-mean specific humidity, and d) transient specific humidity.

270

271

Next we consider the thermodynamic components of 𝛿𝑃−𝐸 shown in the bottom row of Fig.286

4. Like the dynamic components, the monthly-mean thermodynamic component (𝛿𝑞; Fig. 4c) is287

stronger than the transient component at low latitudes while the transient component (𝛿𝑞′; Fig. 4d)288

is stronger outside the tropics. To first order, these terms resemble an amplification of the monthly-289

mean and transient components of 𝑃−𝐸 within the historical climate (i.e., the two terms on the290

RHS of Eq. 11; Supplementary Fig. 4). This result is consistent with the HS06 approximation,291

which makes no distinction between 𝑃−𝐸 from the mean circulation and 𝑃−𝐸 from transient292

eddies (Eq. 1). The reason is that, given fixed dynamics and constant relative humidity, all293

percentiles of the 𝑞 distribution will scale with warming at about the same rate (𝛼 ≈ 7% K−1),294

resulting in a similar amplification of both 𝑞 and 𝑞′ in Eq. 11. Beyond this first-order validation of295

the HS06 approximation, however, the decomposition of 𝛿𝑃−𝐸𝑞 into monthly-mean and transient296

components provides little insight into the underlying thermodynamic mechanisms. For that we297

turn to a different decomposition of 𝛿𝑃−𝐸𝑞, which we derive below.298
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4. Thermodynamic mechanisms299

As noted previously, the HS06 approximation is not identical to 𝛿𝑃−𝐸𝑞 because it neglects300

changes in relative humidity as well as variability in the magnitude of warming (both spatial and301

temporal) (Boos 2012; Byrne andO’Gorman 2015; Siler et al. 2018). In this section, we introduce a302

new decomposition of 𝛿𝑃−𝐸𝑞 that allows the contributions from these additional thermodynamic303

changes to be quantified.304

We begin by decomposing 𝛿𝑃−𝐸𝑞 into two components: one due to changes in temperature 𝑇305

and the other due to changes in relative humidity 𝐻:306

𝛿𝑃−𝐸𝑞 = 𝛿𝑃−𝐸𝑇 + 𝛿𝑃−𝐸𝐻 . (17)

To find 𝛿𝑃−𝐸𝑇 , we assume that 𝐻 is fixed and approximate the thermodynamic change in 𝑞 from307

the Clausius-Clapeyron equation:308

𝛿𝑞𝑇 ≈ 𝑞(𝑒𝛼𝛿𝑇 −1), (18)

where 𝛼 is the Clausius-Clapeyron scaling factor (Eq. 2) and 𝛿𝑇 is the temperature change between309

the historical and warmer climates, assuming no change in dynamics. We estimate 𝛿𝑇 in the same310

way that we estimated 𝛿𝑞 in Section 2: by computing the PDFs of 𝑇 in both the historical and311

warmer climates, and assuming that the percentile of 𝑇 always remains the same under fixed312

dynamics (see Fig. 2). Substituting 𝛿𝑞𝑇 into Eq. 6 gives313

𝛿𝑃−𝐸𝑇 ≈ −𝐿𝑣

𝑔
∇ ·

∫ 𝑝𝑠

0
𝛿𝑞𝑇u𝑑𝑝. (19)

Subtracting 𝛿𝑃−𝐸𝑇 from 𝛿𝑃−𝐸𝑞 (Eq. 6) then yields the contribution from 𝛿𝐻:314

𝛿𝑃−𝐸𝐻 ≈ −𝐿𝑣

𝑔
∇ ·

∫ 𝑝𝑠

0
(𝛿𝑞− 𝛿𝑞𝑇 )u𝑑𝑝. (20)

We discuss the impact of changes in relative humidity later in this section, but first we focus315

on the mechanisms governing the temperature contribution (Eq. 19). If 𝛿𝑇 were uniform in316

space and time, Eq. 19 would give a result very similar to the HS06 approximation (Eq. 1). As317

previous studies have shown, however, spatial and temporal variability in 𝛿𝑇 can impact 𝛿𝑃−𝐸𝑇 in318
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important ways that are not captured by the HS06 approximation (Boos 2012; Byrne andO’Gorman319

2015; Siler et al. 2018; Bonan et al. 2023).320

To quantify these impacts, we first decompose 𝛿𝑇 into monthly-mean and transient components:321

𝛿𝑇 = 𝛿𝑇 + 𝛿𝑇 ′. (21)

Combined with Eq. 18, this yields322

𝛿𝑞𝑇 = 𝑞(𝑒𝛼𝛿𝑇𝑒𝛼𝛿𝑇 ′ −1). (22)

Because the change in the standard deviation of 𝑇 is much smaller than 𝛼−1 everywhere (Supple-323

mentary Fig. 5), we can replace 𝑒𝛼𝛿𝑇 ′ in Eq. 22 with its first-order Taylor approximation, 1+𝛼𝛿𝑇 ′.324

This yields325

𝛿𝑞𝑇 ≈ 𝑞(𝛽𝛿𝑇 +𝛼𝛿𝑇 ′[1+ 𝛽𝛿𝑇]), (23)

where326

𝛽 ≡ 𝑒𝛼𝛿𝑇 −1
𝛿𝑇

(24)

is a modified Clausius-Clapeyron scaling factor, representing the fractional change in 𝑞 per degree327

of monthly-mean warming, assuming no change in the shape of the temperature distribution (i.e.,328

𝛿𝑇 ′ = 0). From the Taylor expansion of 𝛽 about 𝛿𝑇 = 0,329

𝛽 ≈ 𝛼

(
1+ 𝛼𝛿𝑇

2
+ (𝛼𝛿𝑇)2

6
+ ...

)
, (25)

we can see that the difference between 𝛽 and 𝛼 is negligible where 𝛼𝛿𝑇 << 1, but grows larger as 𝛿𝑇330

increases. The second-order term is comparable in magnitude when 𝛼𝛿𝑇 ≈ 2, which corresponds331

to about 30 K of warming given 𝛼 ≈ 7 % K−1.332

Finally, to assess the impact of variations in 𝛿𝑇 with altitude, we express 𝛽𝛿𝑇 as333

𝛽𝛿𝑇 = 𝛽𝑠𝛿𝑇𝑠 + (𝛽𝛿𝑇 − 𝛽𝑠𝛿𝑇𝑠), (26)
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where the "s" subscript indicates the near-surface atmosphere. The first term on the RHS of Eq.334

26 represents the fractional change in 𝑞 at the surface due to monthly-mean warming, while the335

second term represents the departure from this scaling above the surface due to changes in the336

monthly-mean lapse rate (𝑑𝑇/𝑑𝑝).337

Combining Eqs. 19, 23, and 26, we can express 𝛿𝑃−𝐸𝑇 as the sum of four terms:338

𝛿𝑃−𝐸𝑇 ≈
Term 1︷          ︸︸          ︷

𝛽𝑠𝛿𝑇𝑠 (𝑃−𝐸)
Term 2︷                                        ︸︸                                        ︷

−𝐿𝑣

𝑔

∫ 𝑝𝑠

0
(𝛽𝛿𝑇 − 𝛽𝑠𝛿𝑇𝑠)∇ · (𝑞u)𝑑𝑝

Term 3︷                             ︸︸                             ︷
−𝐿𝑣

𝑔

∫ 𝑝𝑠

0
∇(𝛽𝛿𝑇) · (𝑞u)𝑑𝑝

Term 4︷                                      ︸︸                                      ︷
−𝐿𝑣

𝑔
∇ ·

∫ 𝑝𝑠

0
𝛼𝛿𝑇 ′(1+ 𝛽𝛿𝑇)𝑞u𝑑𝑝 .

(27)

The top two rows of Fig. 5 show the annual-mean contributions of each term in Eq. 27, while339

the bottom row shows the total contributions from changes in temperature and relative humidity340

(𝛿𝑃−𝐸𝑇 and 𝛿𝑃−𝐸𝐻). We discuss the contribution of each term and its physical significance341

below.342

1) Term 1: HS06 approximation346

The first term in the decomposition (Fig. 5a) is a slightly-modified version of the HS06 ap-347

proximation (Eq. 1), and represents the Clausius-Clapeyron amplification of 𝑃−𝐸 in response348

to surface warming. Like the original HS06 approximation, it has the same spatial structure as349

𝑃−𝐸 (Fig. 1a), but with relatively greater magnitudes at high latitudes where 𝛿𝑇𝑠 and 𝛽 are both350

amplified (Fig. 6a). Among the four terms in Eq. 27, it is the most important, as indicated351

by its strong correlation with the full pattern of 𝛿𝑃−𝐸𝑇 globally (Fig 5e; 𝑟 = 0.78). However,352
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Fig. 5. a-d) The four terms on the RHS of Eq. 27. e) Annual-mean 𝑃−𝐸𝑇 , which is equal to the sum of the

four terms in (a-d), and represents the total impact of temperature changes. f) Annual-mean 𝛿𝑃−𝐸𝐻 , which

represents the impact of changes in relative humidity.

343

344

345

there are some regions—especially over land and at high latitudes—where it differs significantly353

from 𝛿𝑃−𝐸𝑇 . It is also too moist globally, averaging 7Wm−2 when in reality, mass conservation354

requires that 𝛿𝑃−𝐸 = 0 in the global mean.355

2) Term 2: Change in the monthly-mean lapse rate356

The second term in Eq. 27 is shown in Fig. 5b. It contributes to a large decrease in 𝑃−𝐸357

at high latitudes and a smaller decrease over subtropical oceans. The meaning of this term can358

be understood from Fig. 6, which shows the pattern of 𝛿𝑇𝑠 (Fig. 6a) alongside the 𝑞-weighted359

column-mean temperature change, ⟨𝛿𝑇⟩, which represents the mean warming experienced by all360

18



vapor in the atmospheric column (Fig. 6b):361

⟨𝛿𝑇⟩ =
∫ 𝑝𝑠

0 𝛿𝑇𝑞𝑑𝑝∫ 𝑝𝑠

0 𝑞𝑑𝑝

. (28)

The difference between Figs. 6b and 6a is shown in Fig. 6c. If warming were uniform in height362

(i.e., ⟨𝛿𝑇⟩ − 𝛿𝑇𝑠 = 0), Term 2 would vanish. In reality, however, ⟨𝛿𝑇⟩ − 𝛿𝑇𝑠 is generally positive363

over subtropical oceans, indicating a decrease in the mean lapse rate, and negative at high latitudes,364

indicating an increase in the mean lapse rate (Fig. 6c). Because 𝑃−𝐸 < 0 in the subtropics and365

𝑃−𝐸 > 0 at high latitudes, these lapse-rate changes act to amplify the decrease in subtropical366

𝑃−𝐸 and offset the increase in high-latitude 𝑃−𝐸 relative to the HS06 approximation, explaining367

why Term 2 is negative in both regions (Fig. 5b).368

K

a b

c d

δTs ⟨δT⟩

⟨δT⟩ − δTs δHs /Hs

K K

Fig. 6. a) Annual-mean, ensemble-mean change in near-surface air temperature between the decades 1991-

2000 and 2071-2080. Blue vectors indicate the direction and relative magnitude of F in the annual/ensemble

mean from 1991-2000. b) The 𝑞-weighted column average of temperature change between the decades 1991-

2000 and 2071-2080 (Eq. 28). c) The difference between (b) and (a), with purples indicating less warming in

the column mean than at the surface (i.e., an increase in the mean lapse rate). d) As in (a), but for the fractional

change in near-surface relative humidity.
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3) Term 3: Horizontal warming gradients375

The third term in Eq. 27 is shown in Fig. 5c. Physically, this term represents the contribution to376

𝛿𝑃−𝐸 from horizontal gradients in 𝛽𝛿𝑇 . If we ignore the (small) gradients in 𝛽 and assume no377

change in the lapse rate, Term 3 simplifies to378

Term 3 ≈ −𝛽∇(𝛿𝑇𝑠) ·F, (29)

which is nearly identical to the correction that Boos (2012) introduced to the HS06 approximation379

to account for gradients in 𝛿𝑇𝑠 during the Last Glacial Maximum.380

The impact of warming gradients is evident in Fig. 6a, which shows annual-mean F in blue381

arrows overlaying 𝛿𝑇𝑠. Comparing this figure to the pattern of 𝛿𝑃−𝐸 in Fig. 5c, we find that382

Term 3 contributes to an increase in vapor divergence—and thus a decrease in 𝛿𝑃−𝐸—in regions383

where warming is amplified downstream (i.e., in the direction of vapor transport). This applies384

to much of the extratropics, where F is generally poleward, and where warming tends to increase385

with latitude. It is also true along the eastern coast of tropical South America, where amplified386

warming over land results in weaker convergence of vapor transport from the Atlantic. Conversely,387

we find an increase in 𝑃−𝐸 in regions where the magnitude of warming weakens downstream,388

such as to the south of Greenland or along the western coast of South America.389

4) Term 4: Change in temperature variance390

Figure 5d shows the contribution from the fourth term in Eq. 27. This term captures the impact391

on 𝑃−𝐸 from 𝛿𝑇 ′, which results from a change in the shape of the temperature distribution. It is392

generally weaker than the other terms, with significant contributions in parts of the North Atlantic393

and Southern Ocean, but essentially no contribution at low latitudes or over land.394

We can gain insight into the physical meaning of the 𝛿𝑇 ′ contribution by making two simplifying395

approximations. First, we ignore the factor of 1+ 𝛽𝛿𝑇 inside the integral, since this is close to 1 at396

all but the highest latitudes and has little impact on the overall spatial pattern. Second, we assume397

that vertical variations in 𝛼𝛿𝑇 ′ are small, which allows it to be brought outside the integral. Given398

these approximations, Term 4 simplifies to399

Term 4 ≈ −∇ ·𝛼𝛿𝑇 ′F′, (30)
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where only the transient component of F contributes because 𝛼𝛿𝑇 ′F ≈ 0. Equation 30 implies400

that 𝛿𝑇 ′ only contributes to 𝛿𝑃−𝐸 if the magnitude of warming is correlated with the direction of401

vapor transport.402

To understand why such a correlation might exist, consider that in the middle and high latitudes,403

vapor is primarily transported by eddies mixing across large-scale gradients in 𝑇 and 𝑞, with moist404

air flowing down-gradient within the storm’s warm sector and drier air flowing up-gradient within405

the cold sector. If ∇𝑇 weakens under warming (due, for example, to polar amplification), the moist406

air in the warm sector will experience less warming than the dry air in the cold sector, resulting in a407

decrease in temperature variance (e.g., Screen 2014, Supplementary Fig. 5) and a smaller increase408

in net F than would be expected from Clausius-Clapeyron scaling alone. Understood in this way,409

Term 4 has much the same physical meaning as other corrections to the HS06 approximation that410

have been derived from mixing-length theory, in which the eddy component of F is assumed to be411

proportional to −∇𝑞 (Byrne and O’Gorman 2015; Siler et al. 2018). In both frameworks, a weaker412

temperature gradient offsets some of the increase in ∇𝑞 due to Clausius-Clapeyron scaling, thus413

causing F to increase with warming at a lower rate than 𝑞 itself.414

a. Change in relative humidity415

Finally, Fig. 5f shows 𝛿𝑃−𝐸𝐻 , which represents the impact of changes in relative humidity (Eq.416

20). Globally, the magnitude of this term is small compared to that of 𝛿𝑃−𝐸𝑇 (Fig. 5e), implying417

that most of the change in 𝑞 under global warming is due to Clausius-Clapeyron scaling, not to418

changes in 𝐻. Moreover, much of the spatial pattern of 𝛿𝑃−𝐸𝐻 seems to be closely tied to Fig.419

5c, which represents the impact of horizontal warming gradients (Term 3 in Eq. 27). Indeed, over420

tropical land surfaces4 where 𝛿𝑃−𝐸𝐻 has the largest impact, Figs. 5c and 5f largely offset each421

other, with a spatial correlation of 𝑟 = −0.78.422

The reason for this cancellation is evident in Fig. 6d, which shows the fractional change in423

near-surface 𝐻 along with vectors representing annual-mean F (as in Fig. 6a). Comparing Figs.424

6a and 6d, we see that, with the exception of high latitudes, amplified warming over land generally425

coincides with a decrease in 𝐻, thus offsetting some of the increase in 𝑞 that would result from426

Clausius-Clapeyron scaling alone. According to Byrne and O’Gorman (2018), this effect can be427

4All land equatorward of 30 degrees latitude in both hemispheres.
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explained by two constraints: i) moist static energy increases by about the same amount over land428

and ocean at low latitudes, and ii) surface moisture is limited over land, causing a smaller increase429

in latent energy (𝑞) and a larger increase in enthalpy (𝑇). This highlights an important caveat to430

our results: even though 𝛿𝑃−𝐸 can be mathematically separated into components representing431

distinct physical mechanisms, we should not assume that these mechanisms are always physically432

independent.433

5. Contributions to 𝛿𝑃−𝐸 over land434

In the preceding two sections, we decomposed the pattern of 𝛿𝑃−𝐸 into seven terms, representing435

the impact of changes in monthly-mean dynamics, transient dynamics, relative humidity, and four436

aspects of the spatial and temporal distribution of temperature. In light of these results, we now437

revisit the question that motivated much of the Byrne and O’Gorman (2015) analysis: namely, why438

does 𝑃−𝐸 over land increase by a smaller amount in climate model simulations than predicted by439

the HS06 approximation?440
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Fig. 7. The annual-mean, global-mean contribution to 𝛿𝑃−𝐸 over land from changes in monthly-mean

dynamics (𝛿u, blue), changes in transient dynamics (𝛿u′, red), the HS06 approximation (yellow), changes in

the mean lapse rate (𝛿LR, purple), changes in horizontal temperature gradients (∇[𝛽𝛿𝑇], green), changes in
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in gray, and the actual change in 𝑃−𝐸 over land is shown in black.
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To answer this question, we plot in Fig. 7 the average global land contribution to 𝛿𝑃−𝐸 from each446

of the seven different terms. Our results echo those of Byrne and O’Gorman (2015) in important447

ways. In particular, like Byrne and O’Gorman, we find that the HS06 approximation exaggerates448

the increase in 𝑃−𝐸 over land (Fig. 7, yellow bar), and that warming gradients and changes in449
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relative humidity—while partially cancelling each other at regional scales—both contribute to a450

decrease in 𝑃−𝐸 over land at global scales, offsetting some of the amplification of 𝑃−𝐸 predicted451

by the HS06 approximation.452

But Fig. 7 also highlights some limitations of the Byrne and O’Gorman (2015) analysis, at453

least in the context of the CESM1-LE simulations. For example, whereas Byrne and O’Gorman454

emphasized the role of eddies mixing across an altered temperature gradient, we find that this455

mechanism—represented in our decomposition by a change in temperature variance 𝛿𝑇 ′—has456

little impact on 𝑃−𝐸 over land. Conversely, Byrne and O’Gorman did not consider the role of457

lapse-rate changes, which our analysis identifies as the primary reasonwhy theHS06 approximation458

is too wet over land in the global mean (Fig. 7, purple bar).459
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461

This picture can look quite different at regional scales, however. This is evident in Fig. 8, which462

shows the same breakdown of 𝛿𝑃−𝐸 as in Fig. 7, but for five different regions across the globe463

(outlined in green). In the western US and western Europe, for example, changes in eddy dynamics464
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cause a decrease in 𝑃−𝐸 of 32% and 23% relative to the historical average, despite having almost465

no effect over land in the global mean (Fig. 7). It is also interesting to compare the tropical regions466

of Africa and South America, which exhibit changes in 𝑃−𝐸 of opposite sign. From Fig. 8, this467

difference can be attributed to three terms: the change in monthly-mean dynamics, which has little468

effect in South America but contributes to substantial moistening in Africa, and changes in relative469

humidity and horizontal temperature gradients, which have little effect in Africa but contribute470

to substantial drying in South America. Meanwhile, in Southeast Asia, the HS06 approximation471

is fairly accurate, but only because the moistening effects of circulation changes and the drying472

effects of horizontal warming gradients almost exactly offset each other. These examples highlight473

the diverse range of hydrologic changes that can occur at regional scales, and the ability of our474

method to shed light on their underlying causes.475

6. Summary and Discussion484

In this paper, we have introduced a new method of decomposing the response of 𝑃 − 𝐸 to485

climate change into thermodynamic and dynamic components, and used it to better understand486

the mechanisms governing the change in annual-mean 𝑃− 𝐸 (𝛿𝑃−𝐸) simulated by the CESM1487

Large Ensemble. A summary of our approach and key equations is given in Fig. 9. In Section 2,488

we decompose 𝛿𝑃−𝐸 into contributions from the total changes in thermodynamics (𝛿𝑃−𝐸𝑞) and489

dynamics (𝛿𝑃−𝐸u) (Fig. 9, blue boxes). In Section 3, we decompose both of these terms into490

monthly-mean and transient components (Fig. 9, red boxes). The monthly-mean components are491

similar to terms in the Seager et al. (2010) decomposition, while the transient components represent492

the first-ever decomposition of the transient-eddy contribution to 𝛿𝑃−𝐸 , which Seager et al. (2010)493

treat as a single term. To first order, both the monthly-mean and transient components of 𝛿𝑃−𝐸𝑞494

resemble an amplification of the monthly-mean and transient components of historical 𝑃−𝐸 , as495

predicted by the HS06 approximation. To quantify the influence of additional thermodynamic496

mechanisms, we further decompose 𝛿𝑃−𝐸𝑞 into contributions from changes in relative humidity497

(𝛿𝑃−𝐸𝐻), as well as four terms representing different aspects of temperature change (Fig. 9, green498

boxes).499

Some of our key findings include:500
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Fig. 9. A summary of the various decompositions of 𝛿𝑃−𝐸 and their corresponding equations presented

in Sections 2-4. Blue boxes represent the total contributions from changes in thermodynamics and dynamics

(Section 2). Red boxes represent themonthly-mean and transient components of the thermodynamic and dynamic

contributions (Section 3). Green boxes represent a different decomposition of the thermodynamic term, first

into contributions from changes in temperature and relative humidity, and then a further decomposition of the

temperature contribution into four different terms (Section 4). The red boxes can be interpreted as an extension

of the Seager et al. (2010) decomposition, while the green boxes address thermodynamic mechanisms discussed

by Held and Soden (2006), Boos (2012), Byrne and O’Gorman (2015), and Siler et al. (2018).
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• Dynamic changes explain most of the pattern of annual-mean 𝛿𝑃−𝐸 in the tropics, while501

thermodynamic changes play a dominant role at higher latitudes.502

• Changes in transient-eddy dynamics tend to cause 𝑃−𝐸 to increase at low latitudes and503

decrease at middle and high latitudes, consistent with a reduction in poleward latent-heat504
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transport due to weakened eddy activity. This effect is generally small, but of first-order505

importance in some regions, including the western US and western Europe.506

• Lapse-rate changes act to offset much of the increase in 𝑃−𝐸 predicted by the HS06 approx-507

imation at high latitudes, and are the primary reason why the HS06 approximation is too wet508

over land globally.509

• Other departures from the HS06 approximation over land can be attributed to changes in510

relative humidity (𝛿𝐻) and to horizontal gradients in warming (∇𝛿𝑇). The effects of these511

changes largely offset each other at regional scales, but both act to decrease 𝑃−𝐸 over land512

at global scales.513

Our results clarify the strengths and weaknesses of two simplified approaches to climate mod-514

eling. First, in the moist energy balance model (EBM) of Siler et al. (2018), tropical 𝑃−𝐸 can515

be altered by changes in the Hadley circulation, but the change in extratropical 𝑃−𝐸 is essentially516

thermodynamic, resulting from eddies mixing across altered gradients of 𝑇 and 𝑞. This behavior517

is broadly validated by our results here, which show that the thermodynamic component of 𝛿𝑃−𝐸518

is dominant in the extratropics while the dynamic component is primarily associated with changes519

in the tropical mean circulation (Fig. 4a-b). This helps explain why the EBM is able to capture520

much of the variability in zonal-mean 𝛿𝑇 and 𝛿𝑃−𝐸 across different GCMs based only on their521

unique patterns of radiative forcing, feedbacks, and ocean heat uptake (Siler et al. 2018; Bonan522

et al. 2023).523

Second, many recent analyses of the regional impacts of climate change have been based on524

high-resolution “pseudo-global warming" (PGW) simulations, in which historical boundary con-525

ditions are perturbed with monthly-mean changes in winds, temperature, relative humidity, and526

geopotential height diagnosed from GCM simulations. Among the mechanisms identified in this527

paper, the PGWmethod omits only the contributions from changes in transient dynamics (𝛿u′; Fig.528

4b) and transient temperature (𝛿𝑇 ′; Fig. 6d). Both of these terms tend to be small, suggesting that529

the PGW method should in general be quite accurate. However, there are some regions, such as530

the western US and western Europe, where the contribution from 𝛿u′ is more significant, at least531

within the CESM1-LE (Fig. 8). One should be mindful of these limitations when interpreting532

projections of hydrologic change from PGW simulations.533
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While our decomposition has clear advantages over that of Seager et al. (2010), it also has534

drawbacks. For one, it is more computationally demanding, even if it can be performed on a535

standard desktop computer (see Appendix for strategies to improve computational efficiency).536

More importantly, it requires an ensemble that is large enough to accurately characterize the537

temporal distributions of 𝑞 and 𝑇 at a given location. In this study, we used 200 simulation years to538

characterize each climate state (20 ensemble members times 10 years), but we find nearly identical539

results when we repeat the analysis using only 10 ensemble members (Supplementary Fig. 6).540

Based on the standard definition of climate normals, we speculate that an accurate decomposition541

of 𝛿𝑃−𝐸 would require at least a few decades of simulation time from each climate, though this542

will depend on the relative strength of internal variability on decadal and longer timescales.543

Despite these challenges, we believe our method opens up promising new avenues to study future544

changes in the hydrologic cycle. For example, one could use a similar decomposition to investigate545

the causes of changes in extreme droughts and floods, or extreme vapor transport associated with546

atmospheric rivers. It would also be interesting to repeat this analysis for different large ensembles547

of GCM simulations, which are now widely available (e.g., Deser et al. 2020). This would help548

identify the reasons for differences in model projections of 𝛿𝑃−𝐸 , and highlight the aspects of549

𝛿𝑃−𝐸 that are consistent across models, and thus presumably more certain.550

APPENDIX551

Computing 𝑃−𝐸 from 6-hourly model output552

Equation 5 and other equations involving the divergence of vapor transport were computed as553

follows. First, instantaneous values of 𝑞 and u were downloaded at 6-hour intervals and regridded554

from the native hybrid sigma-pressure vertical coordinate system to 29 pressure levels spanning555

1000 to 5 hPa. Next, the vertical integral of 𝑞u (or a perturbation thereof) was evaluated at every556

horizontal grid point. The integrated vapor transport F at each location was then averaged over557

the full decade (either 1991-2000 or 2071-2080) and all 20 ensemble members. Finally, ∇ ·F was558

computed using spherical harmonics, and the result was smoothed using a 2D Gaussian filter with559

𝜎 = 1.25 degrees, which is close to the grid spacing of the CESM1-LE output (288 longitude points560

by 192 latitude points). This filter width has a minimal effect on the spatial pattern of 𝑃−𝐸 while561

largely eliminating grid-scale noise.562

27



While the vertical integral of 𝑞u is easy to evaluate in principle, looping through each grid563

point and time step would be prohibitively slow. To speed this up, we first compute the integral564

numerically using trapezoidal integration on standard pressure levels, and setting 𝑞u = 0 at all565

pressure levels below the surface. This allows the integral to be evaluated at every grid point with566

a single operation. The problem with this approach is that the range of integration does not extend567

to the surface, but rather to the first standard pressure level above the surface.568

The way we correct for this error is illustrated schematically in Fig. A1. The blue shaded area of569

Fig. A1 represents the trapezoidal integral of 𝑞u on standard pressure levels, with 𝑝𝑖 representing570

the pressure level just above the surface, and 𝑝𝑖+1 representing the pressure level just below the571

surface, where we have set 𝑞u = 0. (Note that pressure increases and height decreases to the right572

in the figure). A better approximation of the integral would use surface pressure 𝑝𝑠 as the upper573

range of integration, yielding the area under the black contour in Fig. A1. This improved result574

can be recovered from the original result by subtracting the area of the blue triangle between 𝑝𝑖575

and 𝑝𝑖+1, and adding the area of the trapezoid between 𝑝𝑖 and 𝑝𝑠. These areas can be computed576

globally with only a few operations, resulting in much better performance than if nested loops were577

used to compute the integral independently at each grid point.578

Performance was also a consideration in how we chose to compute 𝛿𝑞, as depicted in Fig. 2.588

First, at every location, we removed the means of the 𝑞 distributions in both the historical and589

warmer climates to get 𝑞′ and 𝑞′𝑤. We then sorted 𝑞′ and 𝑞′𝑤 from lowest to highest, and calculated590

𝛿𝑞′ as the difference at each percentile of the sorted distributions. Finally, we fit 𝛿𝑞′ to a seventh-591

order polynomial in 𝑞′, and saved the coefficients in a separate file along with the means of each592

distribution. This allowed 𝛿𝑞 to be retrieved quickly from 𝑞 at each grid point and time step.593
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Fig. A1. A schematic illustration of the correction applied to the vertical integral of 𝑞u that is computed using

trapezoidal integration on standard pressure levels. The true vertical integral of 𝑞u has a range of integration

from 𝑝 = 0 to 𝑝 = 𝑝𝑠 (i.e., from the top-of-atmosphere to the surface; Eq. 3). An approximation of this integral

using trapezoidal integration is represented by the area under the heavy black line, with 𝑝𝑖 representing the

standard pressure level just above the surface, and 𝑝𝑖+1 representing the standard pressure level just below the

surface. The blue shading represents a cruder approximation of the integral on standard pressure levels, with 𝑞u

set to 0 at all pressure levels below the surface. The more accurate approximation can be recovered from the

crude approximation by subtracting the area of the blue triangle between 𝑝𝑖 and 𝑝𝑖+1, and adding the area of the

trapezoid between 𝑝𝑖 and 𝑝𝑠.
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